代数学(代数学之父)

时间:2026-02-05 23:05:37来源:打动在线影视 作者:教育

今天给各位分享代数学的代数知识,其中也会对代数学之父进行解释,学代如果能碰巧解决你现在面临的数学问题,别忘了关注本站,代数现在开始吧!学代

“代数学”是怎样产生的?

小学数学课本中的用字母表示数及方程等内容都属于代数学的范畴。“代数学”一词来自拉丁文algebra,代数而拉丁文又是学代从阿拉伯文来的。

公元825年左右,数学阿拉伯数学家阿勒·花剌子模写了一本书,代数名为《代数学》或《方程的学代科学》。作者认为他在这本小小的数学著作里所选的材料是数学中最容易和最有用处的,同时也是代数人们在处理日常事情时经常需要的。这本书的学代阿拉伯文版已经失传,但12世纪的数学一册拉丁文译本却流传至今。在这个译本中,把“代数学”译成拉丁语Algebra,并作为一门学科。后来英语中也用Algebra。

“代数学”这个名称,在我国是1859年才正式使用的。这一年,我国清代数学家李善兰和英国人伟烈亚力合作翻译英国数学家棣么甘所著的《Elements of Algebra》,正式定名为《代数学》。后来清代学者华蘅芳和英国人傅兰雅合译英国学者瓦里斯的《代数术》,卷首有:“代数之法,无论何数,皆可以任何记号代之。”说明了所谓代数,就是用符号来代表数字的一种方法。

《代数学》这本书中具体阐述了哪些内容?

《代数学》是后人将原著的书名意译后给出的,原文直译应是《还原与对消的科学》,“还原”即将方程中的负项移到方程另一端使之变成正项,“对消”即方程两端可以消去相同的项或合并同类项。在《代数学》中,花拉子密用十分简单的例题讲述了一次和二次方程的一般解法,其中二次方程一般解法的给出在世界上是最早的。《代数学》包括三部分内容。在第一部分中,花拉子密系统地讨论了一次和二次方程的解法问题。他第一次提出“根”这一名称,指出方程有三种量组成:根(植物的根或事物的根本);根自乘的结果,即根的平方;简单数。我们现在将解方程求未知量叫做求方程的根,其来源就在于此。花拉子密将方程化归为六种标准类型,用现代符号表示,即:

1.“平方”等于“根”,即ax↑2=bx

2.“平方”等于“数”,即ax↑2=c

3.“根”等于“数”,即:bx=c

4.“平方”和“根”等于“数”,即:ax↑2+bx=c

5.“平方”和“数”等于“根”,即:ax↑2+c=bx

6.“根”和“数”等于“平方”,即:bx+c=ax↑2

其中,a,b,c均为正数。

对于每一种类型的方程,花拉子密都结合具体的例子,系统地给出了一般解法。在解方程的过程中,花拉子密还认识到二次方程有两个根,这在数学史上是最早的,比希腊人和印度人有了很大的进步。但他在解方程时只取正根,而将出现的负根和零根舍去。另外,他还特别指出,若根的数目之半平方后小于自由项,则方程没有根。这相当于指出了现在我们所说的判别式必须非负的条件。

代数学发展的4个阶段:算术、初等代数、高等代数、抽象代数

转自知乎

算术一般就是指自然数、正分数的四则运算,同时作为现代小学课程内容,主要通过计数、度量而引入一些简单的应用题。算术的主体内容虽然难度不大,却是数学中最古老的一个分支,经过长达数千年的时间,逐渐地积累起来的,并作为经验不断凝固在人们的意识中。自然数是在为满足生产、生活中的计算和计数需求,而产生的抽象概念。除了计数需求,还要计算包括长度、重量和时间在内的各种量,因此进一步出现分数。现代初等算术运算方法的发展,起源于10世纪或11世纪的印度;经阿拉伯人传到欧洲。15世纪,被改造成现在的形式。19世纪中叶,格拉斯曼首次成功地挑选出一个定义加法与乘法运算的基本公理体系;而算术的其它命题,可以作为逻辑的结果,从该体系中得到推导。后来,皮亚诺进一步完善了格拉斯曼的体系。算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性,构成了数学其它分支的最坚实的基础。

初等代数是古老算术的演变、推广和发展。 在古代,当算术积累了丰富的数量问题的解法后,为寻求更系统的、更普遍的方法,以解决各种数量关系问题,产生了方程的求解为中心问题的初等代数。以至于长期以来,数学家们把代数学理解成方程的科学,并把主要精力集中在方程的研究上。即研究数字和文字的代数运算理论和方法,更确切的说,是研究多项式的代数运算理论和方法,其研究方法是计算性的。

讨论方程,首先是如何把实际中的数量关系表达为代数式,根据等量关系列出方程。其中代数式包括整式、分式和根式这三大类。代数式可以进行加、减、乘、除四则运算,以及乘方和开方,服从基本运算定律。

解方程问题的发展过程中,数系得到了扩充。算术中讨论的整数和分数的概念扩充到有理数的范围,因此初等代数能解决更多的问题。但仍然存在一些方程在有理数范围内无解。于是,数的概念再一次扩充到实数,进而又进一步扩充到复数。

那么复数范围内还会存在方程无解吗,复数还需要进行扩展吗?NO!代数学一个著名的定理—— 代数基本定理 表明:n次方程有n个根。1742年12月15日,欧拉在一封信中明确地陈述了代数基本定理,德国的数学王子高斯在1799年给出了严格的证明。

综合上面的叙述,组成初等代数的基本内容就是:

有上述基本内容可以看出,初等代数内容的学习设置于现代中学课程中,作为算术的继续和推广,主要的问题就是代数式的有限次数的代数运算,以及产生的方程求解。

代数方程的求解发展简史:

初等代数学向两个方向进一步发展:未知数更多的一次方程组;未知数次数更高的高次方程。在这两个方向上的发展,使得代数学发展到高等代数的阶段。高等代数作为代数学发展到高级阶段的总称,包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数和多项式代数。

高等代数的研究对象,在初等代数的基础上进一步扩充,引入了包括集合、向量、向量空间、矩阵、行列式等在内的新概念。这些新概念具有和数相类似的运算特点,但其研究的方法和运算的方法更加抽象和复杂,新对象的运算,并不总是符号数的基本运算定律。于是代数学纳入了包括群论、环论、域论在内的代数系统,其中群论是研究数学和物理现象的对称性规律的有力工具,也成为现代数学中最具概括性的重要的数学概念,广泛应用于其他部门。

高等代数的基本内容

多项式可视为一类简单的函数,其应用非常广泛。多项式理论的中心问题是,代数方程根的计算和分布,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,寻找解方程的方法。

多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。其中整除性质对于解代数方程是很有用的。解代数方程对应多项式的零点问题,零点不存在,所对应的代数方程无解。

在线性代数中最重要的概念是:行列式和矩阵。行列式的概念最早由日本数学家关孝和在1683年的著作《解伏题之法》中提出,并给予较详细的叙述。欧洲第一个提出行列式概念的是莱布尼茨。1841年,德国数学家雅可比总结并提出了行列式的系统理论。

行列式具有一定的计算规则,它可以作为解线性方程组的工具,把一个线性方程组的解表示成公式,这也意味着行列式是一个数,或一种运算。

由于行列式有着相同的行数和列数,排成的表是正方形的,基于行列式的研究进而发现了矩阵的理论。同是由数排成行和列的数表,矩阵是一个数组,且行数和列数不要求相等。利用矩阵,可以把线性方程组中的系数组成向量空间中的向量;基于矩阵理论,多元线性方程组的解的结构问题,得到彻底解决。除此之外,矩阵在力学、物理、科技等方面得到广泛的应用。

抽象代数也被称为近世代数,创始人之一是被誉为天才数学家的伽罗华。伽罗华通过研究代数方程存在根式解所满足的条件,给出了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题,并提出的“Galois域”、“Galois群”和“Galois理论”都是近世代数所研究的最重要的课题。Galois群理论被公认为19世纪最杰出的数学成就之一。Galois群论还给出了几何图形能否用尺规作图的一般判别法,圆满解决了三等分任意角、倍立方体的问题。更重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。

1843年,哈密尔顿发明了不满足乘法交换律的“四元数”。第二年,格拉斯曼推演出更具一般性的几类代数。1857年,凯莱设计出另一种不可交换的矩阵代数。这些研究打开了抽象代数的大门。事实上,减弱或删去普通代数的某些假定,或将某些假定与其他可兼容的假定代替,就能得到许多种代数体系。

抽象代数的奠基人及理论

抽象代数的研究对象 是各种抽象的、公理化代数系统。由于代数可处理实数、复数以外的向量、矩阵、变换等对象,并分别依赖它们各有的演算定律,而数学家将它们共有的内容升华抽象出来,达到更高层次的抽象代数,使之成为当代大部分数学的通用语言。抽象代数自身包含有群、环、Galois理论、格论等许多分支,并与数学其它分支交叉而产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。

完整的代数学是谁创造的?

线性代数不是由一个人发明的,而是几代数学家研究的结果。

发展过程:由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。

线性代数简介:

线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数

非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。

线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段线性代数,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。

现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如(中国、美国、英国、法国、德国、西班牙、印度、澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。

作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。

向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。

可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。

线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。

古典代数学和现代代数学主要区别是什么?

古典代数学和现代代数学主要区别:分析不同,历史不同。

一、分析不同:粗略说分析学研究的是连续的量,比如实数,代数学研究的是离散的量,比如自然数,他们关系很密切,不是独立的,以后你学到群论和微分几何就知道他们的关系。

二、历史不同:应该是阿拉伯,俗称的阿拉伯数字,就标志着代数学的开始。公元820年左右,阿拉伯数学家花拉子模从印度回国后著《代数学》一书。

初等数论不仅是研究纯数学的基础,也是许多学科的重要工具。它的应用是多方面的,如计算机科学、组合数学、密码学、信息论等。如公开密钥体制的提出是数论在密码学中的重要应用。

代数

是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。

代数学的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于代数学之父、代数学的信息别忘了在本站进行查找喔。

相关内容